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In	the	context	of	music	technology,	Fourier	analysis	is	generally	applied	directly	to	sampled	sound	waves,	with	the	goal	of	revealing	timbral	infor-
mation	about	the	sound	or	sounds	in	question.	By	contrast,	this	paper	presents	a	software	tool	(“Spectral	Musical	Contour	Explorer")	for	applying	
Fourier	analysis	to	more	abstract	musical	time	series;	for	instance,	one	can	analyze	a	melody	as	a	time	series	of	pitches,	or	a	recording	as	a	time	
series	 of	 RMS	 volume	measurements.	 Such	 analyses	 can	 uncover	 salient	 and	musically	meaningful	 periodicities	within	 the	 structure	 of	musical	
works.	Moreover,	the	different	time	scales	of	these	periodicities	reflect	the	multilevel	nature	of	musical	structure	(e.g.	meter,	phrase,	form).	Finally,	
the	 software	 can	be	used	 creatively	 to	 resynthesize	new	pitch	and	volume	contours	 from	a	hand-selected	portion	of	 the	analysed	 spectrum.	 In	
particular,	we	discuss	several	compositions	by	the	author	that	use	this	process	to	generate	novel	musical	material	from	melodic	and	dynamic	con-
tours	found	in	canonical	repertoire.	
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The	 mathematical	 tool	 of	 Fourier	 Analysis	 is	 used	 in	 a	
wide	 range	 of	 fields	 and	 contexts,	 and	 can	 be	 applied	
both	to	time-series	data,	or	 to	data	distributed	over	an-
other	(e.g.	spatial)	dimension.	 In	music	and	audio	analy-
sis,	the	most	typical	use	of	Fourier	Analysis	is	the	applica-
tion	of	a	Discrete	Fourier	Transform	(DFT)—most	typical-
ly	a	Fast	Fourier	Transform	(FFT)—to	a	sequence	of	audio	
samples.	 This	 is	 a	 powerful	 tool	 for	 timbral	 analysis,	 fil-
tering,	synthesis,	efficient	convolution	reverb,	and	many	
other	musical	applications	(Smith,	2007).	

Aside	 from	 forming	 the	 basis	 of	 many	 of	 the	 software	
tools	that	musicians	use	today,	this	application	of	Fourier	
Analysis	 played	 a	 central	 role	 in	 aesthetic	 movements	
within	 the	 field	 of	 music	 composition,	 in	 particular	 the	
advent	 of	 so-called	 spectralist	 approaches	 in	 the	 1970’s	
(Moscovich,	 1997).	 Within	 the	 field	 of	 music	 theory,	
there	has	recently	been	a	resurgence	of	interest	in	a	dif-
ferent	usage	of	Fourier	Analysis,	namely	its	application	to	
abstract	musical	 structures,	 such	 as	 pitch-class	 distribu-
tions	(Amiot,	2017;	Quinn,	2007).	Here,	rather	than	sam-
ples	evenly	spaced	in	time,	the	analysis	focuses	on	sam-
ples	 within	 circular	 pitch-class	 space,	 an	 ‘outside-time’	
musical	 structure,	 to	use	 the	 language	of	composer	 Ian-
nis	Xenakis	(1992).	

This	paper	considers	a	third	category	of	usage:	the	appli-
cation	of	Fourier	Analysis	to	‘in-time’	structures	that	rep-
resent	 changes	 in	 abstract	musical	 parameters,	 such	 as	
pitch	 and	 volume.	 (These	 fluctuations	 will	 be	 termed	
‘musical	 contours’	 throughout	 this	 paper.)	 Such	 an	 ap-

proach	has	been	considered	sporadically,	for	example	by	
Nettheim	 (1992)	and	Voss	 (1978),	 and	a	 similar	 analysis	
and	 resynthesis	 approach	 using	 wavelet	 analysis	 has	
been	taken	by	Kussmaul	(1991),	but	it	has	yet	to	receive	
widespread	recognition.	

This	paper	both	revives	this	line	of	research	and	presents	
a	newly	developed	piece	of	software—entitled	“Spectral	
Musical	 Contour	 Explorer”—for	 creatively	 analyzing	 and	
resynthesizing	 novel	 melodies	 and	 dynamic	 contours	
using	 this	 approach.	 Finally,	 the	 creative	 results	 of	 this	
exploration	 are	 discussed,	 in	 the	 form	 of	 several	 of	my	
own	compositions.	

Non-technical	Introduction	to	Fourier	Analysis	
For	the	sake	of	readers	coming	from	a	more	musical	than	
mathematical	background,	we	begin	with	a	non-technical	
introduction	to	the	tool	of	Fourier	Analysis,	as	applied	to	
a	 recorded	 waveform.	 Fourier	 Analysis	 is	 what	 we	 use	
when	we	 talk	 about	 the	 spectrum	 of	 a	 complex	 sound;	
for	 instance,	when	we	 say	 that	 a	 clarinet	 tone	has	 only	
odd	harmonics,	or	that	the	first	harmonic	of	a	trumpet	is	
stronger	 than	 its	 fundamental,	 we	 are	 referring	 to	 the	
results	of	Fourier	analysis.	The	central	idea	is	that	a	com-
plicated	motion—in	this	case,	the	motion	of	an	air	parti-
cle	under	the	influence	of	a	trumpet	or	clarinet—can	be	
decomposed	 into	 a	 superimposition	 of	 very	 simple	mo-
tions	at	different	speeds.	



Marc Evanstein – Musical Motion at Different Scales: Creative Analysis and Resynthesis of Musical Contour Spectra 

2	 Proceedings	of	Korean	Electro-Acoustic	Music	Society's	Annual	Conference	(KEAMSAC	2020)	

Figure	1a	shows	the	waveform	(i.e.	graph	of	the	fluctua-
tion	in	air	pressure)	of	several	periods	of	a	trumpet	tone.	
The	unique	shape	of	the	waveform	creates	the	trumpet’s	
sonic	signature.	Note	that	these	fluctuations	happen	very	
quickly;	the	shape	repeats	three	times	over	the	course	of	
5ms,	which	translates	to	600	oscillations	per	second	(Hz),	
or	roughly	a	concert	D5.	

What	Fourier	synthesis	does	is	break	down	this	complex	
signature	into	a	sum	of	sine	waves	at	integer	multiples	of	
the	600Hz	frequency	of	the	complex	pattern.	Thus,	for	a	
600Hz	 trumpet	 tone,	 we	 have	 components	 at	 600Hz,	
1200Hz,	1800Hz,	2400Hz,	etc.,	which	we	would	term	the	
1st,	2nd,	3rd,	and	4th	harmonics	or	partials.	Each	partial	has	
its	own	weighting	(amplitude)	and	alignment	(phase).	

We	 can	 see	 what	 this	 looks	 like	 in	 Figures	 1b-e,	 which	
show	 the	 1st,	 2nd,	 4th,	 and	 5th	 partials	 of	 the	 trumpet	
waveform	 respectively	 (the	 original	 waveform	 is	 shown	
in	 gray	 for	 reference).	 The	 first	 partial	 completes	 one	
cycle	 for	every	cycle	of	 the	complex	 trumpet	 tone;	 thus	
it,	 like	 the	 trumpet	 tone,	 is	oscillating	at	600Hz.	The	se-
cond	partial	completes	 two	cycles	 for	every	cycle	of	 the	
trumpet	tone;	thus	it	is	oscillating	at	1200Hz.	Of	the	four	
partials	 shown,	 notice	 that	 the	 second	 partial	 is	 the	
strongest,	and	that	the	phase	of	each	of	the	sine	waves	is	
such	that	 its	peaks	and	valleys	align	well	with	the	peaks	
and	valleys	of	the	complex	waveform.	

Figure	1f	shows	the	sum	of	these	sine	waves,	which	very	
nearly	 reproduces	 the	 original	 trumpet	 waveform.	 In	
fact,	 there	 is	 no	 physical	 or	 acoustical	 difference	 be-
tween	 the	 simultaneous	 sounding	 of	 the	 sine	 waves	 in	
1b-e	 and	 the	 sound	 of	 their	 sum	 in	 1f.	 If	we	wished	 to	
reproduce	the	original	 trumpet	wave	with	perfect	 fideli-
ty,	we	would	simply	need	to	 include	the	remaining	rela-
tively	weak	higher	harmonics.	

It	turns	out	that	there	is	only	one	way	to	break	a	complex	
wave	shape	into	a	sum	of	sine	waves	like	this,	and	we	call	
this	unique	combination	of	harmonics	with	different	am-
plitudes	and	phases	a	spectrum.	Thus,	when	we	say	that	
the	 sound	 of	 a	 trumpet	 has	 a	 strong	 second	 harmonic,	
we	mean	 that	 the	 effect	 of	 the	 complex	 pressure	wave	
produced	by	a	trumpet	is	identical	to	the	effect	of	a	very	
specific	 combination	of	 sine	waves	added	 together,	 and	
that	the	second	of	these	sine	waves	is	the	strongest.	

Musical	Countour	Spectra	
In	 a	 musical	 context,	 the	 term	 spectrum	 is	 very	 readily	
associated	with	timbre	and	with	the	direct	application	of	
Fourier	Analysis	 to	 a	 recorded	waveform.	 Indeed,	many	
canonical	examples	of	the	“Spectral”	music	that	emerged	
in	 the	 1970’s	 (e.g.	 Gerard	 Grisey’s	 Les	 Espaces	 Acous-
tiques)	 are	 based	 specifically	 on	 transcribing	 the	 results	
of	such	an	analysis	to	music	notation	(Féron,	2011).		

However,	because	Fourier	analysis	 is	an	abstract	mathe-
matical	 tool,	 it	 can	be	 just	as	easily	used	 to	analyze	 the	
variation	 in	 any	 other	 musical	 parameter,	 at	 any	 time	
scale.	For	instance,	the	pitch	of	a	melody	can	be	seen	as	
a	 time-varying	 property,	 operating	 on	 the	 scale	 of	 se-
conds	rather	 than	milliseconds.	Such	analysis,	combined	
with	creative	resynthesis,	can	be	a	source	of	novel	musi-
cal	material,	as	we	shall	see.	

Figure	 2	 depicts	 the	melody	of	 “Pop	Goes	 the	Weasel,”	
first	 in	 traditional	 music	 notation,	 and	 then	 as	 a	 time-
varying	pitch	contour.	By	depicting	the	pitch	of	the	mel-
ody	in	this	way,	we	see	that	it	is,	mathematically,	just	like	
the	trumpet	waveform	from	before.	The	only	difference	
is	 that	 this	 wave	 represents	 the	 motion	 of	 an	 abstract	
musical	 parameter,	 rather	 than	 of	 air	 pressure	 directly,	

	

Figure	1.	(a)	Short	excerpt	from	a	trumpet	waveform	showing	a	repeated	fluctuation	in	air	pressure.	(b)-(e)	One	period	of	that	fluctuation	(light	
gray),	with	the	1st	(fundamental),	2nd,	4th,	and	5th	harmonics	isolated,	respectively	(blue).	(f)	The	recombination	of	those	harmonics	(blue)	as	
compared	with	the	original	waveform	(light	gray).	
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and	 that	 the	 variation	 is	 on	 the	 scale	 of	 seconds	 rather	
than	milliseconds.	

	
Figure	2.	The	melody	“Pop	Goes	the	Weasel,”	first	in	traditional	music	
notation,	and	then	reinterpreted	as	a	time-varying	pitch	contour.	

There	 is,	 therefore,	 no	 reason	we	 cannot	 apply	 Fourier	
analysis	 to	 this	 pitch	 contour,	 just	 like	 we	 did	 with	 the	
trumpet	 waveform.	 As	 with	 the	 trumpet,	 these	 oscilla-
tions	operate	at	1x,	2x,	3x,	etc.	the	frequency	of	the	mel-
ody	itself1,	and	each	of	these	‘partials’	has	its	own	ampli-
tude	 and	 phase,	 with	 some	 partials	 being	 especially	 in-
fluential.	

Figure	3	shows	some	of	the	lower	partials.	The	first	par-
tial	 (Figure	3a)	 is	not	particularly	strong,	but	 its	phase	 is	
nevertheless	aligned	so	that	the	peak	coincides	with	the	
highest	note	(A4)	of	the	melody.	The	same	can	be	said	of	
the	second	partial	(Figure	3b).	The	strongest	component	
is	the	fourth	partial,	which	completes	four	full	cycles	over	
the	course	of	the	melody	(Figure	3c).	Why	is	this?	

The	reason	 is	 that	 the	melody	 itself	 is	 in	 four	parts,	and	
each	of	its	first	three	phrases	follows	the	same	pattern	of	
low	 then	 high.	 The	 final	 phrase,	 starting	 on	 the	 A,	 the	
highest	note	in	the	melody,	is	somewhat	of	an	exception.	
In	order	to	compensate,	the	first	and	second	partials	are	
aligned	 so	 as	 to	 peak	 at	 this	 exact	 moment,	 as	 is	 the	
eighth	partial	shown	in	Figure	3d.	The	eighth	partial	also	
helps	to	create	the	more	local	peaks	at	G4	in	the	first	and	
third	phrases.	

Adding	together	the	partials	depicted	 in	Figure	3a-d,	we	
arrive	 at	 the	 contour	 shown	 in	 Figure	 4a,	 which	 tracks	
the	motion	 of	 the	melody	 fairly	 faithfully,	 albeit	 a	 little	
too	smoothly.	 In	order	to	achieve	the	flat	pitch	plateaus	
that	our	western	ears	have	come	to	expect,	we	need	to	
include	more	rapid	 fluctuations	 like	 the	20th	partial	 (Fig-
ure	3e)	 to	help	 flatten	out	 the	peaks	of	 the	 slower	 sine	

waves	 (Figure	 4b).	 As	 with	 the	 trumpet	 waveform,	 by	
including	enough	partials	we	can	 reproduce	 the	original	
melodic	contour	with	perfect	fidelity.	

Figure	3.	The	(a)	1st/Fundamental,	(b)	2nd,	(c)	4th,	(d)	8th,	and	(e)	20th	
harmonics	of	harmonics	of	the	pitch	contour	of	the	melody	“Pop	Goes	
the	Weasel”	(blue),	superimposed	on	the	original	contour	(light	gray).	

	

Figure	4.	(a)	The	sum	of	partials	1,	2,	4,	and	8,	producing	a	passable	
approximation	of	the	melodic	contour.	(b)	Sum	of	partials	1,	2,	4,	8,	and	
20,	showing	that	partial	20	helps	to	flatten	out	some	of	the	peaks	into	
plateaus.	
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A	Mathematical	Schenkerian	Analysis	
The	 above	 should	 give	 some	 indication	 of	 the	 potential	
for	 using	 this	 kind	 of	 Fourier	 Analysis	 as	 an	 analytical	
tool.	 Among	 the	magnitudes	 and	 phases	 of	 the	 various	
partials	was	valueable	information	about	the	structure	of	
the	melody,	 from	 its	overall	 shape	 (1st	 and	2nd	partials),	
to	 its	 phrases	 (4th	 partial),	 to	 hints	 of	 its	 motivic	 and	
rhythmic	 structure	 (8th	 partial).	 Those	 familiar	with	 the	
theories	of	Heinrich	Schenker	may	note	a	certain	kinship	
here,	 in	 that	both	Schenkerian	analysis	and	this	applica-
tion	 of	 Fourier	Analysis	 represent	 a	 hierarchical	 view	of	
musical	structure.	(In	Schenkerian	analysis,	this	hierarchy	
is	represented	by	a	range	of	interrelated	structural	levels,	
from	 background	 (Ursatz),	 to	 middleground,	 to	 fore-
ground	(Cadwallader	&	Gagné,	2007).)	

From	an	 analytical	 point	 of	 view,	 the	 process	 described	
above	may	 provide	 a	 valuable	 complement	 to	 the	 pro-
cess	of	Schenkerian	Analysis,	with	the	former	valued	for	
its	objectivity,	and	the	latter	for	its	subjectivity.	

A	Tool	for	Creative	Resynthesis	
The	 illustrations	 in	 Figures	 2-4	 were	 produced	 using	 a	
tool	that	I	created	for	analysis	and	resynthesis	of	musical	
contour	 spectra,	 called	 “Spectral	 Musical	 Contour	 Ex-
plorer.”	This	program	was	created	in	Python,	using	PyQt5	
as	 the	underlying	GUI	 framework,	 and	using	 an	embed-
ded	ChucK	(Wang	&	Cook,	2004)	binary	 for	rudimentary	
sound	 synthesis.	 A	 more	 complete	 screenshot	 of	 the	
program	is	shown	in	Figure	5.	

To	begin	with,	 the	user	 is	allowed	 to	 load	either	a	MIDI	
file	or	a	WAV	file.	 In	the	case	of	a	MIDI	file,	the	average	
pitch	of	all	active	MIDI	notes	over	time	is	plotted	against	
a	grand	staff2,	while	 in	 the	case	of	a	WAV	 file,	a	plot	of	
the	 variation	 in	 RMS	 volume	 over	 time	 is	 displayed.	

When	 inputting	 a	MIDI	 file,	 the	 user	 is	 prompted	 for	 a	
length,	in	quarter	notes,	to	assign	to	each	sample;	when	
inputting	a	WAV	file,	the	user	is	prompted	for	the	desired	
window	size	for	calculating	the	RMS.	

Figure	6.	Screenshot	from	“Spectral	Musical	Contour	Explorer.”	The	
bottom	half	of	the	screen	shows	the	contour	spectrum	of	the	melody,	
with	active	partials	in	blue	and	inactive	partials	in	gray.	The	top	part	of	
the	screen	plots	both	the	original	melody	(in	gray)	and	the	
reconstructed	melody	(in	blue).	

By	mousing	over	the	partials	of	the	spectrum	in	the	bot-
tom	 half	 of	 the	 screen,	 additional	 information	 about	
phase	 and	 amplitude	 can	 be	 viewed,	 and	 the	 user	 can	
then	click	any	these	partials	to	toggle	them	on	and	on	or	
off.	In	this	way,	any	partial	spectral	reconstruction	of	the	
contour	can	be	achieved.	Finally,	 the	samples	of	 the	 re-
constructed	 contour	 can	 be	 exported	 in	 the	 form	 of	 a	
text	file,	so	that	they	can	be	used	in	a	composition,	or	for	
further	analysis.	

Creative	Results	

Adagio	Cantabile	

The	first	piece	in	which	I	made	use	of	this	technique	was	
Adagio	 Cantabile,	 for	 oboe	 and	 guitar.	 Using	 as	 source	
material	 the	 main	 theme	 of	 the	 second	 movement	 of	

Figure	5.	Comparison	of	(a)	the	opening	melody	from	the	second	movement	of	Beethoven’s	Pathétique	and	(b)	a	corresponding	passage	in	Adagio	
Cantabile.	(c)	is	an	excerpt	from	towards	the	end	of	the	work.	
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Beethoven’s	Sonata	Pathetique,	Op.	13,	I	performed	Fou-
rier	 analysis	 and	 resynthesis	 on	 both	 pitch	 and	 rhythm	
independently	 (encoding	 rhythm	 as	 a	 sequence	 of	 note	
length	samples3).	A	happy	accident	occurred	 in	this	pro-
cess:	since	 I	was	 treating	pitch	values	as	continuous,	 ra-
ther	than	discrete,	I	ended	up	with	microtonal	inflections	
in	 the	 resulting	 resynthesis.	 This	 ended	 up	 becoming	 a	
central	aspect	of	the	oboe	part.	

After	 exploring	 the	 space	 of	 possible	 reconstructions,	
both	in	pitch	contour	and	rhythm,	I	ended	up	with	a	col-
lection	of	 short	melodic	 snippets,	which	 I	 ultimately	 as-
sembled	using	 pencil	 and	paper.	 Figure	 6	 compares	 the	
opening	melody	of	the	Beethoven	(a)	with	a	two	excerpts	
from	Adagio	Cantabile	 featuring	a	partial	 reconstruction	
of	 the	melody.	 In	 (b),	 the	overall	contour	of	 the	melody	
has	 been	 removed,	 leaving	 only	 the	 slight	 microtonal	
deviations.	In	(c),	taken	from	near	the	end	of	the	work,	it	
is	 the	 local	 ornamentation—the	 higher	 frequency	 infor-
mation—that	 has	 been	 removed,	 leaving	 a	melodic	 line	
that	sweeps	gradually	up	and	down.	In	this	 latter	case,	 I	
allowed	myself	 considerable	 flexibility	 in	 choice	 of	 acci-
dentals,	letting	my	ear	guide	such	decisions	intuitively.	

Unraveled	

The	second	piece	in	which	I	used	this	technique	was	Un-
raveled,	for	Percussion	Quartet	and	Impossible	Electronic	
Orchestra.	The	title	gives	a	hint	as	to	the	source	material:	
the	famous	melody	from	Ravel’s	Bolero.	 I	used	the	soft-
ware	 described	 here	 to	 analyse	 and	 resynthesize	 the	
melody	 in	 various	 degrees	 of	 recognisability,	 and	 then	
had	 these	 reconstructions	 performed	by	 an	 “Impossible	
Orchestra,”	 	 consisting	of	 pitch-bent	 samples	 of	 orches-
tral	instruments.	

As	with	Adagio	Cantabile,	 then,	 the	contour	 in	question	
is	a	melodic	pitch	contour.	An	added	wrinkle	in	this	case,	
however,	is	that	rolls	in	percussion	parts	are	used	to	em-
phasize	 the	 individual	 partials	 of	 the	 melodic	 contour,	
with	many	of	these	rolls	superimposed	on	one	another	at	
a	given	time.		Thus,	though	the	fission	process	of	Fourier	
analysis,	 the	monophonic	melody	gives	rise	to	a	hetero-
phonic	 accompaniment,	 one	 which	 emphasizes	 details	
within	the	melody	itself.	

Anamnesis	

The	third	(and	most	recent)	work	that	 I	composed	using	
spectral	 analysis	 and	 resynthesis	 of	 musical	 contours	 is	
Anamnesis	 for	 Chamber	 Orchestra.	 Anamnesis	 differs	
from	Adagio	Cantabile	and	Unraveled	in	that	the	musical	
contour	 being	 analysed	 was	 a	 dynamic	 contour,	 rather	
than	a	pitch	contour.	Here,	again,	 I	used	a	famous	work	

as	 the	 source	material	 for	 analysis:	 the	Allegretto	 from	
Beethoven’s	Symphony	No.	7.	

Figure	7a	shows	a	screenshot	(from	the	program	Audaci-
ty)	 of	 the	 recording	 by	 Carlos	 Kleiber	 and	 the	 Vienna	
Philharmonic	 Orchestra.	 Figure	 7b	 shows	 this	 same	 re-
cording,	as	loaded	into	“Spectral	Musical	Contour	Explor-
er”:	 a	 dynamic	 contour	 has	 been	 created	 by	 calculating	
RMS	 values	 for	 every	 half-second	 of	 audio,	 effectively	
resulting	in	a	unipolar	version	of	what	we	see	in	Audaci-
ty.	 Figures	 7c,	 d,	 and	 e	 show	 three	 examples	 of	 strong	
periodicities	found	in	the	dynamic	contour	through	anal-
ysis.	Notice,	 for	 instance,	how	 the	 second	harmonic	de-
picted	 in	 Figure	 7c	 highlights	 the	 two	main	peaks	 of	 in-
tensity	within	the	movement.	

Figure	7.	Analysis	of	the	dynamic	contour	of	the	Allegretto	from	
Beethoven’s	Symphony	No.	7.	(a)	The	dynamic	shape	of	the	movement	
as	shown	in	Audacity.	(b)	The	same	contour,	as	represented	in	“Spectral	
Musical	Contour	Explorer.”	(c),	(d),	and	(e)	Three	prominent	
periodicities	found	at	different	time	scales.	

I	 then	 used	 the	 SCAMP	 libraries	 for	 computer-assisted	
composition	 in	 Python	 (Evanstein,	 2018)	 to	 orchestrate	
these	different	 layers	of	motion,	with	some	 instruments	
playing	 the	 larger	 swells,	 others	 playing	 the	 mid-level	
swells,	and	still	others	playing	the	fastest-moving	swells.	
Thus,	 as	 in	 Unraveled,	 Fourier	 Analysis	 broke	 a	 single	
contour	(this	time	a	dynamic	contour)	into	a	heterophon-
ic	 texture	of	simple	gestures.	Figure	8	shows	an	excerpt	
of	 the	 texture	 in	 the	 violins	 from	 the	 opening	 of	 the	
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work,	 consisting	 of	 many	 short,	 overlapping	 swells.	 Be-
low,	one	can	see	a	larger	swell	beginning,	tremolando,	in	
the	cello	section.	

It	 should	be	noted	 that,	 as	 in	Adagio	Cantabile	 and	Un-
raveled,	 the	process	of	musical	 contour	analysis	and	 re-
synthesis	was	merely	the	starting	point	for	the	composi-
tion.	 The	 final	work	 also	 resulted	 from	numerous	 other	
musical	processes	and	decisions,	which	were	largely	intu-
itive	in	nature.	

Conclusions	
There	 are	 several	 possible	 avenues	 of	 further	 research	
and	 compositional	 practice.	 From	 the	 point	 of	 view	 of	
composition,	 each	 new	 contour	 represents	 a	 different	
initial	 condition	 for	 the	 creative	 process,	 as	 does	 each	
possible	 approach	 to	 resynthesis	 (e.g.	 removing	 all	 but	
the	low	partials,	the	odd	partials,	the	prominent	partials,	
etc.).	As	the	above	examples	illustrate,	this	approach	can	
generate	snatches	of	musical	material	(as	in	Adagio	Can-
tabile)	and/or	it	can	form	the	basis	of	the	work’s	overall	
form	(as	in	Anamnesis).	

Possibilities	 can	 be	 further	 expanded	 by	 the	 develop-
ment	of	 the	 tool	 itself.	For	example,	one	could	 incorpo-
rate	 contours	 based	 on	 other	 musical	 parameters:	 in-
stead	 of	 RMS	 volume,	 an	 inputted	 sound	 file	 could	 be	
analyzed	 in	 terms	 of	 its	 variation	 in	 spectral	 centroid,	
spread,	flux	or	kurtosis,	or	on	its	zero-crossing	rate.	

Another	 interesting	 possibility	 would	 be	 to	 allow	 for	
modification	 of	 the	 phase	 of	 partials	 before	 resynthesis	
of	 the	 contour.	 In	many	 cases,	 the	effect	 of	 phase	 is	 as	
important	as,	 if	 not	more	 important	 than,	magnitude	 in	

establishing	structural	boundaries	within	a	data	set	(Bar-
tolini	et	al.,	2005).	

In	short,	I	envision	this	approach,	and	the	tool	I	have	de-
veloped,	 as	 one	 among	 many	 that	 could	 serve	 as	 a	
source	of	inspiration	for	composers	in	their	creative	pro-
cess.	
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1
	For	those	more	familiar	with	Fourier	analysis,	it	will	be	apparent	that	I	
am	using	a	window	size	equal	to	the	whole	length	of	the	melody.	There	
is,	therefore,	an	underlying	assumption	that	the	melody	itself	 is	cyclic.	
This	may	be	more	or	less	appropriate	in	different	situations.	
2
	In	 the	Pop	Goes	The	Weasel	examples	above,	 the	 inputted	MIDI	 file	
was	monophonic.	
3
	The	results	turned	out	to	be	quite	interesting	with	rhythm:	When	no	
frequencies	 (except	 DC)	 of	 oscillation	 were	 present,	 the	 rhythm	 was	
static,	with	all	notes	the	same	length.	When	lower	partials	were	includ-
ed,	 the	 rhythm	started	 to	accelerate	and	decelerate	at	 the	 faster	and	
slower	parts	of	the	melody.	As	I	 included	faster	and	faster	oscillations,	
these	accelerandi	and	decelerandi	became	more	and	more	 local,	until	
all	of	the	detail	of	the	original	rhythm	was	recreated.	


